EXERCISE 3: STYLING LINKS WITH CSS
 Web 120 – Web Authoring II

© 2010 - 2015 Raven Gildea

Copy and re-name your A3 (Text Styles) folder. Name your new folder ex2, and name the .html file links.html.
Make Anchor Links Using an Existing Element’s ID

Anchor links that scroll to the top of a web page or down to a specific location on the page require two parts to work in all browsers: an anchor (the bookmark) and a link.

If you want your go to top link to work in every browser, it must link to an anchor on the page.

The wrapper is generally the first element with an id on the page, so we can make our Go to Top link take us there:

<div id="wrapper">

(the anchor)

Go to Top

(the link)
We can use the same technique to make links that jump down the page to a specific point: simply put a unique id on an element in the desired location:

<h2>Frequently Asked Questions</h2>

 What Are Your Hours?

(the link)
 What Is Your Location?
(the link)

<h3 id="hours">Hours</h3>

(the anchor)
<p>Monday – Friday 8 AM – 7 PM</p>

<h3 id="location">Location</h3>

(the anchor)
<p>123 Sesame Street</p>

Add some anchor links to your file. Save, upload, test, and validate.

Enclose Anchor tags in Block Elements

If we want a stand-alone <a> tag that’s not part of a larger section other text (such as a list or a paragraph), it’s best to enclose it in its own <p> tag:

<p>Go to Top</p>

This improves the semantic structure of our HTML, and also gives us more CSS styling options: we can add vertical margins and padding to the block <p> tag in ways that we can’t do with an inline <a> tag all by itself, text-align the paragraph to the right, etc.

Set Global Link Styles

Check out the default browser styles for <a> tags:

· An unvisited link is underlined and blue

· A visited link is underlined and purple

· An active link is underlined and red (click and hold to see the active state)

We pretty much never want to use the browser’s default styles, so let’s write our own global styles to override them on all links, anywhere on our page(s):

Be sure to write styles for our links’ pseudo-class states:

a:link
(Only anchor tags with an href property)

a:visited
We will sometimes want visited links to be distinct from unvisited links. Usually I use the same visual styles for both visited and unvisited links.

a:hover
We will usually want our links to change on hover: this makes it obvious to our users that this is in fact a link.

a:focus
Same as hover, but for people who are using their keyboard rather than a

mouse to place focus on the link. Helps with accessibility.

a:active
I don’t generally define the active state. Link, visited, and hover/focus

states are plenty for most purposes.

The order of your CSS rules matters: LVHFA (Lord Vader Hates Furry Animals). You don’t need to define them all, but you should put the ones you do define into this order.
You want your visited link state to override your unvisited state, your hover and focus states to override both link and visited states, and your active state to override everything.

Note that some sources say LVFHA. The focus and hover states are essentially the same, so neither needs to override the other.

Every time you define a hover state, define a matching focus state. The visual styles for hover state and focus state should be the same. You can combine those selectors like this:

a:hover,

a:focus {

hover and focus styles go here

}

I find it helpful to put each selector on a separate line, as this makes it easier to spot the missing focus selector, and to make sure my descendent selectors are complete:

#content li a:hover,
#content li a:focus {
Important: When defining pseudo-class a:link states, it’s best NOT to also set conflicting styles using the general selector “a”. If you have both, your anchor tags will load with the “a” styles, and then switch to the a:link styles after the user interacts with them. This produces odd, disorienting results: avoid it.

Design Considerations for Link Styles

· Always set global link styles first, then use descendant selectors to set location-specific exceptions to these styles for your nav, your sidebar, etc.
· Links should be obvious. Don’t make your user guess which text is a link.

· Don’t change font, font-size, or boldness on hover. Avoid having your text “jump”.

· Legibility in all states (no purple links on black background, yellow links on a white background, etc.)

· Users should get visual feedback when they hover/focus a link. Links need a hover/focus style that is visually distinct from the un-hovered style.
I generally like to have my links stand out on hover/focus (i.e. use a brighter color, or a color with stronger contrast against the background than the un-hovered state) rather than fade back on hover/focus with a softer/lower contrast color.

You’ll probably want to put a bit of thought into good choices for your final project’s global link styles. You don’t need to do them for Ex2, but add them to your file this week.
Relative vs. Absolute URLs

Think carefully about whether to make your link paths relative or absolute.

As a general rule, links to pages within your site should be relative.

Links that take your user away from your site should be absolute.

Be sure your absolute links also contain the http:// protocol. Otherwise, the browser will look for the destination page on your server.

Opening Links in a New Browser Window or Tab
Blah

Use thoughtfully!

As a general rule, links to pages within your site should open in the same window.

Links that take your user away from your site should open in a new window.

This means that when you are creating a relative link, it will generally have no target attribute, and when you are creating an absolute link, it will generally have target="_blank".

Use Lists of Links to Create Navigation Menus

NOTE TO RAVEN:

Many W15 students included target="_blank" on their A5 nav menus. Make a main nav that goes to HOME ABOUT PRODUCTS SERVICES CONTACT, with no target. Demo social nav, with target. Re-do the example file.
Navigation is a list of places the user can go. Using lists to mark up navigation improves the structure of your HTML:

Home

About

Products

Services

Contact

This applies to navigation elements such as social media icons, too. Mark up these links in list items:

 ">

List items are block level elements. To get them to line up side by side in our horizontal nav, we can float them:

#nav-main li {

 float: left;

}

When we float them, our nav element collapses. We’ll need to either give it a fixed height, or give it an overflow: hidden; to make it expand down to enclose the floated elements.

Which option we choose depends on what happens to our nav when the screen size shrinks. If we want the nav items to drop to a second line, we use overflow:hidden. If all nav items will remain on a single line until our nav switches to a vertical format for small screens, we can use a fixed height.

#nav-main {

 height: 2.5em;
/* = 40px */

}

With a fixed height on the nav element, we can vertically center our tags within the nav by giving them a line-height that equals the height of their container (the nav element).

#nav-main li {

 float: left;

 line-height: 2.5em; /* same height as #nav-main */

}

We can get our menu items to fill the navbar by assigning them a width in %, and then center the labels within the list items:

#nav-main li {

 float: left;

 line-height: 2.5em;

 width: 33.333334%;
/* 100 / number of list items */

 text-align: center;

}

We can use Firebug to examine our page and see our list items and our anchor tags. But it will be easier to distinguish the <a> tags from the tags if we give them unique styles while we are developing:

/* FOR DEVO ONLY */
comments make it easy to find and remove these styles later

#nav-main li {

 background-color: #009;

}

#nav-main a {

 background-color: #990;

}

/* END DEVO-ONLY STYLES */

Note that I am using background-color rather than border, as borders will make my boxes get bigger and may mess up my layout, while background color simply makes my padding area become visible, without changing its size.

Save, upload, validate, and test.

It’s easy to see now that we’ll need to override our global list indent to get rid of the white space on the left edge of our nav list. We use a descendent selector to do this:

#nav-main ul {

margin: 0;

/* reset both margin and padding just in case */

padding: 0;

}

We can give our menu links larger target areas by setting our <a> tags to display as block elements, which makes them fill the entire list item’s content area:

#nav-main a {

display: block;

}

… and separate them from one another by adding a border, except on the last one:

#nav-main a {

display: block;

border-right: 1px solid;
 /* border on the anchor, not the list item! */
}

#nav-main li:last-of-type a {
border-right: 0;

}

Note that the list item is the last-of-type, not the anchor tag: every anchor is the last (and only) one in its individual list item parent tag.

Be sure you use a descendent selector to set display:block only on anchor tags nested inside navigation menu list items. We still want links in our non-menu content and sidebar lists to display inline.

Save, upload, validate, and test.
Now let’s get rid of those list item bullets:

#nav-main li {

blah: blah;

blah: blah;

list-style-type: none;

}

Vertical Sidebar Navigation

Let’s look at the list of links in your left sidebar’s nav element:

Lorem Ipsum Dolor

 Consectetur Adipiscing

 In Eu Turpis

 Maecenas in Libero

 Etiam Mollis Leo

 Sed Nec Mi Ac Mauris

 Sed Vitae Ante Diam

 Nullam Vel Tortor Justo

Note that these are null links, <a> tags that behave as links, but don’t take you anywhere. They can be created in two ways:

 (scrolls to top of page in some browsers… searching for an anchor)

 (won’t scroll the page, way less annoying)

We can use null links when the pages we are linking to don’t exist yet. This will make our <a> tags have pseudo-class states in all browsers, but keep the browser from taking us to an error page if we click them.

Your exercises and assignments may have null links if appropriate, but should not have any broken links.

Note that when we make several links on a page null, we are giving them all the same href value. This will make all the null links change to the visited style when one of them is clicked (if we have unique styles for visited links).

It won't happen when they each have a unique href, on a finished web page. And it won’t happen if our a:link and a:visited styles are the same.
Take a look at your sidebar list, using Firebug to examine the elements. Notice that the tags are block level elements, and fill the width of the div. The <a> tags are inline elements, and only take up as much space as their content (the words inside the <a> tag.)

As with our main nav, we can make it easier to distinguish the <a> tags from the tags by giving them unique styles while we are developing:

/* FOR DEVO ONLY */

#nav-sub li {

background-color: #009;

}

#nav-sub a {

 background-color: #990;

}

/* END DEVO-ONLY STYLES */

Now we’ll use a descendent selector to add some styles to our nav’s tags.

/* SUBNAV STYLES */
add a comment to your CSS for each new section

Our background colors help us to clearly see where the list items are, where the <a> tags are, and where the margins are. If we’re not sure, we can always use Firebug.

Let’s get rid of the global list indent and the bullets:

#nav-sub ul {

/* styles only tags nested within the #nav-sub element */

list-style-type: none;

margin: 0;

padding: 0;

}

Save, upload, validate, and test.
… and then expand the anchor tags to fill their list items. Add these styles one at a time, testing to see the results of each one:

#nav-sub a {

padding: 0.6250em 1.25em;
/* makes a larger target area around the text */

display: block;

/* makes anchor tag vertically fill their list items */
}

We’ll use a descendent selector to reset the global margin under our list items, and add a border to separate them:

#nav-sub li {

list-style-type: none;

margin: 0;

border-bottom: 1px solid;

}

Now delete the devo-only nav colors on your list items and anchor tags.

Add a:link, a:visited, and a:hover, a:focus background and text colors for your main nav and sub nav menus.

Don’t worry, you can change these styles on your final project.

Give the nav links dark text on a light background for link/visited styles, and light text on a dark background as their hover/focus styles.

Be sure to write full descendent selectors, and to list your selectors in the proper LVHFA order:

#nav-sub a:link,

#nav-sub a:visited {

#nav-sub a:hover,

#nav-sub a:focus {

You don’t have to write a:active styles. I don’t think they really add much to the user experience in most cases.

PAGE
4

