Positioning Page Content



          Web 120 – Web Authoring II 



© 2010-2015 Raven Gildea


POSITIONING FLOATED COLUMNS WITH CSS

Build your Web 120 pages using float-based layouts. Here’s how to do it.

A div is simply a block level element, or a box. HTML5 elements such as <header>, <nav>, <aside> and <footer> are also simple boxes. They define areas of your page.

Block-level elements will automatically extend as far horizontally as they can, so they will fill your browser window (the width of the body tag) unless you give them a declared width.

Centering Your Content With a Wrapper Div

Some screens are really wide. We want to avoid loooong line lengths that are hard to read. Set a max-width for your pages, and center them in the browser window.

The simplest way to build pages that will be centered in the browser window is to give your page a wrapper div with a declared width, and center that wrapper. Everything else on the page goes inside the wrapper div.

How wide should the wrapper be? That depends on your content. 

A wide screen doesn’t mean you should have an unlimited line length: the human eye can only comfortably track back and forth a few inches. For good legibility, your main content column should have between 45-75 characters per line. (60-65 is the ideal.) This generally translates to a line-length not wider than about 500 pixels.

So, I like to keep my page widths in the 800 to 960 pixel range on desktop screen widths. Wide pages need two sidebars. A design with only one sidebar needs a narrower page width.

The wrapper div has a declared width, a max-width, and is centered on the page.

The header, horizontal nav, and footer elements are all nested inside the wrapper, so they don’t need their own widths. 

We only need to center the wrapper to have everything else appear centered on the page: 

#wrapper {


width: 940px;


margin: 0 auto;

}

Now any single-column areas, such as the header, footer, and a horizontal nav if you’re using one, will be centered and constrained to the width of the wrapper. They won’t need their own widths, and to change the width of the page we only need to change one CSS declaration: the width of the wrapper.

Two Column Layouts

So now our single-column areas are nicely centered on our page. But for good legibility (reasonable line lengths), we’ll want to have at least two text columns, one floated to the left and one floated to the right.

To do this, we need to nest our columns inside an enclosing div with a declared width, and float one column to the left and the other to the right.

[image: image1.wmf]
3 Rules of Floats:

1. A floated element must have a declared width

2. Float to one side, put margin on the other side 

3. Where there is float, there must be clear 
1. Floated Elements Must Have a Declared Width

To float our columns, we give our sidebar and content divs declared widths. By making the sidebar + content widths less than the wrapper width, we get nice neat columns with a gutter of white space between them.

Note: Don’t put padding or margin between the columns: we want to leave the center gutter loose to make our layout work in all browsers. If we fill every horizontal pixel inside the wrapper with margin and padding, our layout will break in some browsers.

2. Float to One Side, Put Margin on the Other Side. Putting float left and margin-left on the same element, or float right and margin-right on the same element, will make your layout break in some browsers.

You can, however, do this:

li {

    float: left;

    margin-right: 30px;

}

This will let you float several items to the left, with space between them. 

To keep a floated element from touching its container, put padding on the container div.

3. Where There is Float, There Must be Clear
To make an element that comes after a float in the code start beneath the float on the page, we need to give it a clear declaration.

To prevent the footer from trying to float up next to the content div, we can do this: 


#footer {



clear: both;


}

If we float our nav list items, the first non-floated element might be the #middle div:


#middle {



clear: both;


}

etc.

Once we’ve floated our columns, we can re-arrange the layout without touching the HTML. Want to switch the sidebar to the right and the content to the left? Just do this:


#content {



float: left;

      
}


#sidebar {



float: right;

      
}
Three Column Layouts

Three column layouts help us avoid having really narrow pages on wide screens.
To get our three columns to work in all browsers, we create a nested two-column layout by adding another containing div. Here I’ve called this container #main:
[image: image2.wmf]
Again, we can easily re-arrange our column order without touching the HTML. Just change each float: left to float: right, and each float: right to float: left.
Overflow Hidden: 

Expanding the Container to Enclose Floated Contents

Note that floating an element takes it out of the normal document flow. Because of this, the containing element of a floated element will shrink to have no height. The floated content overflows out of the div.

This isn’t a problem if our containing main and middle divs are invisible. But if we want to give them a border, a background color, or a background image, we’ll need them to expand downwards to actually contain the floated elements nested inside it.

There are two ways to get our containing divs to expand downward around our floated elements: 

1. Float the containing div too.


#main {



width: 700px;



float: right;


}

2. Set the containing div’s overflow property to hidden. This tells the browser, “Don’t let any extra content flow out of the div.”


#middle {



overflow: hidden;


}
How Divs Handle Overflow:

•  If we nest a large (non-floated) image into the HTML of a div with an undeclared width and height, the div will expand to enclose the image.

• If we give the div a smaller-than-the-image fixed width and height and an overflow of hidden, only the upper left portion of the image will be visible.

• If we give the div no declared height and float elements inside it, it needs an overflow of hidden to make it expand downward to enclose the floated elements.

The Middle Section of the Page Needs a Flexible Height

Note that while the header, nav, and footer may need fixed heights to match their background images, the central area of each page (content, sidebars, #middle and #main) should never have a fixed height.
The middle part of the page will have content added and subtracted over time, and that content will also vary from page to page. Therefore, let the amount of content determine the height of these elements on each page.

Positioning, Display, and Overflow

We have four different positioning options in CSS: static, relative, fixed, absolute


Static: default, elements appear in the order they occur in doc flow


Relative: relative to its position in the HTML doc flow



If no offset, follows doc flow



If offset, leaves a space



Why use it? Because absolutely positioned elements must be nested inside 


an element with relative positioning



default is the body tag


Fixed: position is fixed in place in the browser window



This can be cool, but is often more trouble than it’s worth. Use sparingly.


Absolute: top and left offset from another, relatively positioned, element 



(default is the body tag if no element has position: relative)



removed from document flow (code can be anywhere on the page)


Visibility: hidden or visible



visibility: hidden item is still on the page, pushes other elements out of the 


way (useful with JavaScript behaviors)


Display: usually block or inline, but also can use inline-block or none



display: none item doesn’t display in the browser at all: it’s as if it isn’t 


there. Changing display to block (or inline) will make it re-appear.

I generally try to avoid using inline-block. It’s quirky, and thus requires a lot of workarounds.


Overflow: 
Determines what happens when the contents of an element exceed 



the declared size of the element.



visible

the element grows to accommodate the non-floated 





contents





This is the default



hidden

chops off the excess. Only the top left portion appears





also makes divs expand to enclose floated elements, which 




are removed from the document flow.



scroll

adds scroll bars – makes a mini, scrollable window on page



auto

adds scroll bars only if needed

Layers

Z-index: the third dimension



Front-to-back space in the browser window, or stacking order



We can overlap elements by using absolute positioning and z-index


Even without absolute positioning and z-index, our document still has layers



each element has background color, background image, contents




an element nested inside another has a higher z-index 





(like nesting boxes)




adjacent sibling elements have the same z-index 






(like side by side boxes)



body tag background color (farthest down in page stacking order)



body tag background image (above background color in stack)



body tag contents, such as divs nested inside body tag 




(higher in stack, have their own background color, background 



image, and content)



elements nested inside the divs, such as <h> tags, <p> tags, lists, <a> tags




(still higher in the stack, and each can have their own background 



color, background image, and content)

Most of the time, you won’t need absolute, fixed, or relative positioning. I recommend using static (default) positioning, floats, and clears to build all your sites. 

Really.

Keep Your Layout Code Simple

If you have more divs than are shown in the diagrams above, you probably need to simplify your code. 

Raven’s Rules for Page Layout:


1. The middle (content) section of your site should never have a fixed height: 

     let the content determine the height of the divs.


2. Leave the width of the gutters between columns undeclared: 

    don’t fill your entire horizontal space with padding and/or margins.


3. Never float toward a margin: put padding on the containing element instead.
PAGE  
1

