Lightbox Image Gallery

 Web 120 – Web Authoring II

© 2010 - 2015 Raven Gildea

Adding JavaScript to Your Site:

1. Find the JavaScript you want by searching online.

2. Read the instructions on the web site you find.

3. Download the files.

4. Add the downloaded files to your site’s files.

5. Add the necessary <script> and <link> tags to your document’s head. Be sure the paths in your code reflect the paths you use in your file structure.
6. Add the code needed to call the script into action to the body of your document.

7. Upload and test.

Actually, first there’s Step 0, which is to set up our page. I’ve already done this, so please download http://ravengildea.com/web120/downloads/image-gallery-lightbox.zip
Open image-gallery.html in a text editor, and let’s take a look at it.

What we’ve got here are some thumbnail images placed inside a div. These are the images our user will click to start the slideshow. I’ve left lots of comments in the code.

Step 1: Find the JavaScript

We’ll be using the Lightbox2 Slideshow, because it’s open source and fairly simple:

http://lokeshdhakar.com/projects/lightbox2/
Step 2: Read the Instructions

The instructions are on the How to Use section on the Lightbox2 page. Read them.

Step 3: Download the Files

Click the “Download” button, download the Lightbox files, and save them wherever you like.

Step 4: Add the Files to Your Site’s Files

Unzip lightbox2.7.1.zip. Open the lightbox folder. It contains an img folder, a css folder, and a js folder. There’s also a sample index.html file, which repeats the How To Use info, and a README file which has contact info for the Lightbox author.

The images for the lightbox are in a folder named img. Our images folder is named images. (It’s the one inside the image-gallery directory you downloaded from the class site.) Once we copy the image files into our own images folder, we’ll have to update all the paths on all the lightbox files. We’ll do this in Step 5, below.

Copy the css folder into the root folder your site. If your site already has a css folder, just copy the lightbox css files into it.

Note that if you are going to have more than one css file, they should be in a css folder. If you move your own css files into the new css folder, be sure to update their link paths on your HTML pages. This is detailed in Step 5, below.

Copy the js folder into your site’s root folder. If your site already has a js folder, just copy the new files into it. If your scripts folder is called something else, such as scripts, you can copy the files into it, and then update the script paths in Step 5, below.

Step 5: Place Links to the New Files into Your Document’s Head

We now need to be sure our HTML file can find the scripts and css files needed to make the image gallery work. Following the directions on the Lightbox2 web page, we will:

5A. Paste paths to our new Javascript files into our documents head:

<script src="js/jquery-1.11.0.min.js"></script>

<script src="js/lightbox.min.js"></script>
If your scripts folder isn’t called js, update the paths as needed.

5B. Paste a link to our new CSS file into our document’s head:

<link href="css/lightbox.css" rel="stylesheet" />
5C. Check to be sure the paths to our image files are correct. We’ve used an images folder named images, so we’ll need to update the paths to the images in our HTML and CSS files. We can use Dreamweaver’s handy Find and Replace tool to do this.

Look at line 3 of lightbox.css:

content: url(../img/close.png) url(../img/loading.gif) url(../img/prev.png) url(../img/next.png);

In Dreamweaver, type Ctrl F (Cmd F on a Mac) for Find. Find all instances of /img/ and replace it with /images/ to match our folder name.
Important Note: If we’ve moved our own, pre-existing CSS or JavaScript files into the new css or js folders, we have to update our paths from our HTML file to these files. We would also have to update the paths from our CSS file to the images folder.

If our CSS image paths were:

url(images/myfile.png);

(look for the images folder in the same directory as the CSS file)

they would now need to be:

url(../images/myfile.png);

(go up out of the css directory, then look for the images folder)

Step 6: Add the Code to Call the Script

Now we’ll need something on our page to make the script spring into action. Usually this means having our user interact with the page, for example by clicking or hovering over something. So that means anchor tags.
In this case, we just wrap each thumbnail image in an <a> tag, make the href take us to the full-sized image file for each thumbnail, and add a data-lightbox attribute to each <a> tag.
The example on the Lightbox web page looks like this:

Let’s break that down a bit:

<a

We’re wrapping an <a> tag around whatever we want our user to click on.
class="example-image-link"
We don’t need a special class on our anchor tag. Let’s delete it.
href="img/demopage/image-1.jpg"
Our href is the path to the image we want to appear when we click the link. We need to update this to say

href="images/image-1.jpg"

so it matches our images folder name. (I don’t find the nested “demopage” folder useful, so I’m removing that from my image folder and my path.)
data-lightbox="example-1”
Adding the data-lightbox attribute to each of our <a> tags is what activates the script.

The value can be whatever we want: I’m calling my slideshow birds, like this:

data-lightbox="birds"

title="my caption">
Title is optional, and not included in the example. I want captions, so I’m adding a title attribute to my anchor tag. The titles we give each image will show up when that image appears in our slideshow. The instructions say to use “data-title”, but we can just use “title”, which is an actual attribute of the <a> tag. Try it and see. Also note that our anchor’s opening tag ends here.

This is the tag inside the <a> tag that our user will click to activate the script. We’ll be using our own images, and we don’t need the class.

And of course our <a> needs a closing tag, as well.

So we’re editing this:

to become this:

All we’re doing here is editing the code we copied from the Lightbox web page to be appropriate to our particular project, updating our paths, and replacing the sample image inside the <a> tag with our image tag instead.
Note that we have two different image paths: the small image is the thumbnail that will appear on the page: this tag is nested inside our anchor tag. The large image will appear in the lightbox: this path is the href for our anchor: the thing that clicking the link takes us to.

Group Your Related Images

Now check out the second example given on the How to Use section’s Activate instructions:

If you have a group of related images that you would like to combine into a set, use the same data-lightbox attribute value for all of the images. For example:
image #1

image #2

image #3
We want a slideshow of related images, so our anchor tags will all need to use the same data-lightbox attribute value. I’m changing the example’s group name of “roadtrip” to a group name that makes sense for this project:

Rinse and repeat, updating the href, data-lightbox, title, src, and alt values for each linked thumbnail on the page.

Note that we can have more than one slideshow on the same page: we just need to give each set of images a unique group name, and be sure that all the images in each unique slideshow share the same group name.

Step 7: Upload and Test
We can use Firebug to see what happens in our code as the script runs. If we want, we can edit the downloaded CSS file to change the look of the gallery.

Don’t forget to test in multiple browsers.

Note that the author has provided us with two versions of the JavaScript file: a minified version that is compressed and has comments stripped out, and a nicely formatted, easy to read, fully commented version. This allows us to upload the minified version, but use the commented version if we want to edit the JavaScript to change the way it functions.
Add for next time:

Use CSS to add visibly distinct hover/focus state to linked images:

Change border color

Add drop shadow

PAGE
1

