Forms

 Web 120 – Web Authoring II

© 2015 Raven Gildea

BUILDING WEB FORMS

Learning to build forms is an essential web design skill: just about every web site has some sort of form on it.

To function, a form needs:

1. a form tag, including:

a. action (the URL of your form handler)

b. method (how your data is transmitted to the server: “post” is secure, “get” can be bookmarked. For collecting data, use “post”. For dynamic searches, use “get”.)

2. form elements inside the form’s opening and closing tags. Every form element has a name and a value. The name is the question you are asking your user, the value is the answer the form handler will send back to you.
3. a submit button inside the form’s opening and closing tags

4. a form handler on a server

5. a page returned by the server to your user: this could be a thank you page, search results, a dynamically generated invoice for a purchase made, etc.

Download and open form-starter.html.

http://ravengildea.com/web120/docs/form-starter.html
This file is for our in-class demo only: please do not copy and paste any code from the demo file into your forms assignment or final project! Write a new form from scratch.

The Form Tag
Add a <form> tag into the content div.

<div id="content">

<form action="formhandler.php" method="post">

<!-- All your form elements, including the button, go here -->

</form>

</div>
All form elements need to go inside the form tag’s opening and closing tags.

Be sure your form tag has:

Action:
This is the path to your form handler file.

If you are using your own form handler file on your own server, you can enter a relative path, such as action="formhandler.php"

If you are using your hosting company’s default form handler, you’ll need to get the name and path.

Many hosting companies provide a form handler inside your root folder. You can look to see if you have one by using your FTP program, and test it out by putting a relative path to their file into your form tag.

Method:
Select get or post. For our purposes, use post.
You can also give your form a class or an ID, which allows you to give unique styles to one form, or consistent styles to two or more forms, if you have multiple forms on a page or site.

Note: You can put any HTML elements into a form: text, graphics, tables, etc. It doesn’t have to contain only form elements.

Formatting Your Form

Opinions differ as to best practice, but a table is probably the easiest way to format complex forms, and offers the surest cross-browser consistency. However, a form laid out in a table will be difficult to make responsive on small screen sizes.

For this class, we will use CSS to format a relatively simple form. Be sure to download and read the Form Styling handout:

http://ravengildea.com/web120/docs/form-styling.doc
No matter what you do, your form will look slightly different in different browsers.

Fieldset and Legend
A <fieldset> is a box that can be used to group related elements in a form. It’s optional, but makes a handy tool for formatting our form.

Note that a single form can contain many fieldset tags. This is a good way to divide long forms into easier-to-understand chunks.

<form action="formhandler.php" method="post">

 <fieldset>

 <legend>This is my demo form</legend>

 <!-- form elements go here -->

 </fieldset>

</form>

Form Elements
The basic form elements are text field, text area, checkbox, radio button, and select box.
• Text field is a single-line box where the user can enter text, such as a name or
email address.

• Text area is a multi-line box where the user can enter text, such as a message.

• Checkboxes allow the user to select more than one option from a group.

• Radio buttons allow the user to select only one option from a group.

• Select boxes allow the user to pick from a drop-down menu of items.

To enter most of these form elements, we’ll use a self-closing <input/> tag, with a type attribute to tell the form which type of input we want.

<input type="text" name="first-name" id="first-name" />

input

gives us a form element.
type="text"
gives us a text field.

name

tells the form handler which field we are talking about. This is useful if we

want the email the form handler sends us to make sense.

id

tells the label which field we are talking about. This helps with

accessibility, as we’ll see in a few minutes.

(also gives us the ability to attach CSS to our form element if we want to.)

IMPORTANT: For most form elements, we’ll want the name and ID to be the same.

Example: <input type="text" name="first-name" id="first-name" />

IMPORTANT EXCEPTION: checkbox groups and radio buttons come in a group, and each button in the group must have the same name for the buttons to function. Each button must have a unique ID.

Example:

<input type="radio" name="cardtype" "id="visa" value="VISA" />

<input type="radio" name="cardtype" "id="mc" value="MC" />

<input type="radio" name="cardtype" "id="amex" value="AMEX" />

Text Inputs

Ready to add a text field to your form? Let’s do it:

<input type="text" name="first-name" id="first-name" />

To keep our users from entering the complete works of Shakespeare, we can set the maximum number of characters the field will accept with the maxlength attribute:
<input type="text" name="first-name" id="first-name" maxlength="40" />
Note that maxlength does not change the size of the text field, only the number of characters that can be entered into it.

Label Tags
Labels aren’t just the text that tells the user what information we want: <label> is also an HTML tag that helps the form know which text goes with which form element. We do this by giving the <label> tag a for attribute. Above the text field, add this:

<label for="first-name">First Name:</label>

Save your file and preview in a browser. Try clicking on the text First Name: in the browser window. Note that your cursor jumps into the text field: the text field has focus. This helps users with small screens and/or physical disabilities use the form. Our for attribute makes that happen, by matching the label to the form element’s unique id.
Users can also use a keyboard to tab through the fields in a form, moving focus to a new field with each tab.

Do not use placeholder text to replace label tags

HTML5 offers a placeholder attribute for input tags, but it’s not supported in IE<10, and it doesn’t offer the usability/accessibility benefits that labels do. Also, 99% of users skip form fields with hint text. Include placeholders if you must, but you should still use label tags for cross-browser support, UX, and accessibility for users with disabilities.

Using paragraph tags

Wrapping <p> tags around form elements isn’t necessary, but it can help to group labels and their inputs together, and allow you to easily put a uniform margin between elements:

<p><label for="first-name">First Name:</label>

 <input type="text" name="first-name" id="first-name" maxlength="40" /></p>

Email Inputs
The email field is perhaps the most important element in any contact form, as that’s how you will respond to your site visitor’s message. In XHTML 1.0, email addresses were collected with the lowly text input.

However, HTML5 offers a new input:

<input type="email" name="email" id="email" />

The name and id could actually be anything you like: the type="email" is what makes this an email field.

Browsers that support HTML5 will check to be sure any text in this field fits a standard email format. In browsers that don’t support HTML5, this field will default to a text field.

Required

We’ll often want to make certain fields required. In HTML5, this is as simple as adding the “required” attribute to our input tag:

<input type="email" name="email" id="email" required />

The form will not submit without something entered into required fields. In the case of the email input, the text entered must also be in a valid email format.

Whenever you make a form field required, it’s a good practice to let your user know before they hit the submit button:

<label for="email">Email: (required)</label>

<input type="email" name="email" id="email" required />

Checkboxes and Radio Buttons
Checkboxes allow a user to select several options.

Radio buttons allow only one option: be thoughtful about how you use them. Is only one option really the best choice?

For credit card type, probably yes.
For certain demographic info, or “how did you hear of us?” possibly not.

Name/Value Pairs

When creating checkboxes and radio buttons, pay attention to the name/value pairs. This is the information your form handler will send the site owner. Make sure the name/value pairs convey information that will make sense to someone who is not looking at the form!

Value:
This is the info that will be submitted if the user checks the box. It doesn’t

have to match the label. The label is for the user, the checked value is for

the site owner.

Note that checkboxes aren’t submitted unless they are checked … which means the checked value field should usually be an affirmative answer.

Example: a check box with the label “I have read and agree to the terms and conditions” could have a name of “agree-to-terms” and a checked value of “yes”. The name/value pair sent by the form handler would then be “agree-to-terms: yes”.
Add a checkbox to your form:

<input type="checkbox" id="agree-to-terms" name="agree-to-terms" value="yes" />

Save your file and check your work in a browser. Hmmn … a checkbox without a label isn’t very useful, is it?
Checkbox and radio button labels generally go after the form item rather than before it. This means you can wrap the entire form item with your label tag, for better accessibility.

<label>

<input type="checkbox" id="agree-to-terms" name="agree-to-terms" value="yes" />

 I have read and agree to the terms and conditions.
</label>

We don’t need a for attribute here, because the form element is inside the label tag.
Checkbox Group

In many cases, you’ll want to insert a group of checkboxes. With a checkbox group, the user can check more than one option. For example:

What ice cream flavors do you like?

__ Chocolate

__ Cherry

__ Coconut

Remember, the name/value pairs will be passed by your form handler to your email message, so be sure to choose names and values that will make sense to a human.
IMPORTANT NOTE: If you are using Raven’s form handler, your checkbox group name must end in square brackets, like this: name="flavors[]"to allow the user to select more than one checkbox.
The form handler will then send multiple checked values as an array.
So your labels, names and values might be:

Label

Name

Value

Chocolate

flavors[]

chocolate

Cherry

flavors[]

cherry

Coconut

flavors[]

coconut

If the user selects Chocolate and Coconut, the name/value pairs sent by the form handler would be:

flavors: chocolate, coconut

You can add explanatory text above the checkbox group if it helps your user understand the form element’s purpose. For example, we could do it this way:
<p> What ice cream flavors do you like?

<label>
 <input type="checkbox" id="chocolate" name="flavors[]" value="chocolate" />

 Chocolate
</label>
<label>

 <input type="checkbox" id="cherry" name="flavors[]" value="cherry" />

 Cherry
</label>

<label>

<input type="checkbox" id="coconut" name="flavors[]" value="coconut" />

 Coconut
</label></p>
Note that all checkboxes in a group have the same name, but they each have a unique id.
Radio Buttons

Radio groups operate much like checkbox groups, but only one can be selected at a time. Therefore, always consider giving your user a neutral value as one option.

Example
Would you like us to send you:

__ Occasional spam

__ Frequent spam

__ Tons of spam

__ none of the above

Like checkbox groups, all radio buttons in a group must have the same name, but they each have a unique id.

<p>Would you like us to send you:

<label>

 <input type="radio" id="spam-some" name="spam" value="some" />

 Occasional Spam

</label>

<label>

 <input type="radio" id="spam-alot" name="spam" value="lots" />

 Frequent Spam

</label>

<label>

 <input type="radio" id="spam-tons" name="spam" value="tons" />

 Tons of Spam

</label>

<label>

 <input type="radio" id="spam-none" name="spam" value="none" />

 None of the Above

</label></p>
Text Areas

Text areas operate much like text boxes, with a few important distinctions.

• <textarea> tags are enclosing tags, not self-closing tags:

<textarea name="comments" rows="4" cols="25">Optional placeholder text can go here.
Note that white spaces between textarea tags will show up in the placeholder text on the
page!</textarea>
You don’t need to put text nested inside the tags. If you do, it will be the default text your users see inside the text area when the page loads. Use default text with caution: it is generally not good for usability.
• <textarea> tags also must have a rows attribute and a cols attribute, which determine the size of the text area. Without these attributes, the browser doesn’t know how big to make the box, and your HTML won’t validate.
<p><label for="comments">Comments:</label>

<textarea name="comments" id="comments" rows="5" cols="25"></textarea></p>

The rows attribute determines how many lines of text can appear in the textarea. A rows value of 5 means five lines of text will be visible at a time, no matter how many lines of text are actually entered.

The cols attribute is a bit more esoteric: it specifies the width of the text area “in average character width” ... which is not ems, and is not the number of actual characters that will fit into the box.

Just pick a number that’s not too big or too small (I usually go with something between 20 and 40, depending on the size of my form) and then override it in your CSS.

Select Boxes

If you ever need a select box to list the US states, don’t build it by hand … code ready to copy and paste is available on the Internet. However, your class assignments must have select box options that were clearly hand-coded by you and are unique to your site, not copied and pasted.
In select boxes, the text enclosed within the <option> </option> tags is the text the user will see, and the value is the information that gets submitted with the form. If you don’t specify a value on a select box, the form will submit the enclosed option text as the value.

Be sure to include a neutral first option, such as “Choose one” and make that the option that’s initially selected, like this:

<p><label>What state do you live in?</label>

<select name="state" size="1" id="state">

 <option value="#">Choose one</option>

 <option value="WA">Washington</option>

 <option value="OR">Oregon</option>

 <option value="ID">Idaho</option>

 <option value="DS">State of Despair</option>

 </select></p>

The size attribute on a select element determines how many options are visible when the page loads.
Select boxes also accept a multiple attribute, which allows users to select more than one option. However, it’s not great for usability: for multiple options, it is more user-friendly to use checkboxes instead.
Adding a Button

Your form is pretty useless unless the user can send it to your server’s form handler: for this, you need a button.

<p><input type="submit" value="Send"></p>

The only required attributes on the button’s <input> tag are type and value.

The button doesn’t need a name, because we don’t need to see a name/value pair for the button in our results email. For a more user-friendly results email, don’t give the button a name.
You don’t need to give your button a label: the button’s value will be printed on it.

Let’s examine how a button’s type and value attributes work:

value:
Whatever you type here will appear on the button.

type:
submit does the obvious.

reset returns the form to the initial values it had when the page loaded. This can be useful if you’re using the form to have your user update their profile, but is probably not that useful if resetting clears the form.

none allows you to attach JavaScript behaviors to the button. Instead of interacting with a form, a button set to none can be used to trigger an action, such as opening a new window, starting or stopping an animation, etc.

HTML5 Form Elements
HTML5 has a number of fancy form elements. While they are well worth exploring, I strongly recommend getting the form basics nailed down before you go crazy with them.

TEST YOUR FORMS!

The most common problem I see with forms is that the emailed results don’t make any sense to a person who isn’t looking at the form itself.

Whenever you build a form, test it several times, sending yourself several different responses.

· Try checking all the checkboxes.

· Try checking different ones.

· Try checking all the radio buttons.
(If you can, your radio buttons don’t all have the same name.)

Read the email results, and see if they make sense. Can you figure out which items you selected, without looking at the form?

And, of course, you need to test your form to see whether it actually takes you to the thank you page. If it doesn’t, there is a problem with the thank you file’s path in your formhandler. Make sure it accurately reflects the path from the formhandler file you are using to the thanks page on your server.

Testing forms is critical
If your users are submitting forms and you’re not getting the results, or you are getting incorrect results, how will you ever know?
PAGE
1

